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Abstract. Abstraction methods have become one of the most interest-
ing topics in the automatic verification of software systems because they
can reduce the state space to be explored and allow the analysis of more
complex systems. One direction for abstracting a system is to transform
its formal description (its model) into a simpler version specified in the
same language, thus skipping the construction of a specific (model check-
ing) tool for the abstract model. This paper presents the details of αspin,
an xml-based tool to abstract promela models in order to employ spin
as an abstract model checking tool. αspin is built on the top of spin
which allows us to take advantage of its current and future improve-
ments for the verification of abstract models. Although the theoretical
basis has been previously presented, many aspects related to correctness
of the abstraction process are also included in this work to make the
paper self-contained.

1 Introduction

Computer based verification methods, such as model checking [1, 4], have become
realistic techniques to be used in the software development cycle. However, ef-
fective verification is only possible and fruitful if useful formal models of the
systems are available. A useful model is an abstract representation of the real
system, containing only the details necessary to ensure that satisfaction (non-
satisfaction) of interesting properties in the model gives information about the
behavior of the real system. Excessive model details may produce the well-known
state explosion problem, which could prevent the use of current tools to fully an-
alyze the system. This problem affects both the (classic) explicit model checking
method and the more recent symbolic approach [22], and both of them employ
ideas of abstract interpretation [6] to construct more abstract state spaces or
models [3, 20, 7].

The use of abstract interpretation in symbolic model checking has been based
mainly on predicate abstractions [14], and it usually consists in the automatic
generation of an Ordered Binary Decision Diagram (BDD) that represents the
abstract state space. When the verification results produce (abstract) counterex-
amples, some refinement method can be employed to construct a more precise
abstraction [2, 23].



From our point of view, in explicit model checking the abstract state space
should not be constructed prior to verification, so it must be constructed on-
the-fly. Furthermore, it seems a good practice to employ the same language for
the original (concrete) and the abstract models, in such a way that the same
tool can be employed to verify both systems and the results can be more easily
related. Many authors consider explicit model checking very suitable for software
systems. For this reason, it is convenient to focus efforts in obtaining automatic
methods to exploit abstraction in this context.

This paper presents an approach to extend explicit model checkers with ab-
straction capabilities. Although the approach can be applied to different tools,
we present αspin, a tool to introduce abstraction in the model checker spin
[16, 17]. αspin is based on using abstract interpretation to obtain more abstract
models by automatic syntactic transformation of promela. The inclusion of
automatic abstraction in explicit model checking must improve some of the clas-
sical steps enumerated by Clarke et al. in their initial proposal [3]: a) defining
one abstraction function α suitable for the temporal property to be verified,
b) the construction of the abstract model (or the abstract state space) and c)
relating the verification results to the behavior of the initial (concrete) model.

As regards step a), we propose the use of an abstraction library with pre-
viously defined functions that can be selected by the user depending on the
property to be analyzed. That is, α should preserve the relevant information for
this property and eliminate the non-relevant information [10]. Function α defines
the data approximation and the abstraction of the simplest language operations’
behaviour. Although α is selected by the user from a repository of well defined
functions, αspin includes strategies to assist the users in the selection (mainly by
using static analysis to find out information from the model and the property).

Our method to construct the abstract model (step b) is based on working on
xml in order to be as independent as possible of the actual modelling language,
so that the technique can be applied to other model checkers. Using xml also
allows us to take advantage of currently available tools and APIs to process xml
documents [11].

Finally, with respect to step c), we introduce the notion of non-standard
verification to relate the results in the abstract and the concrete model [13]. The
abstract model allows us the efficient verification of absence of deadlock and
temporal properties encoded with Linear Time propositional temporal Logic
(ltl) [21].

There are other tools that add some kind of abstraction to spin, but they
mainly follow the model extraction approach. This method consists in producing
a high level model from the source code (C, Java) to be analyzed with some
existing model checking tool like spin, as implemented in Feaver [18], Bandera
[5] or JPF [15] (first version). αspin may be considered as complementary to
these tools for two reasons. First, αspin could be employed in the first designs
of concurrent software or protocols whereas Feaver, Bandera and JPF are more
suitable when the final code has been written. Secondly, given that promela is
the target notation in these tools, our abstraction method provides an additional

2



way to optimize the verification of software systems following the model extrac-
tion approach. Maybe Bandera toolset is the closest to our proposal. However,
we are mainly interested in the verification of ltl formulas. Additionally, our
contribution is the use of xml to represent the whole library and the precise
definition of the correctness conditions to be held by the functions before being
stored in the library.

αspin has been implemented on top of spin, which allows us to take ad-
vantage of its current and future improvements for the verification of abstract
models. The result is that αspin maintains compatibility with future versions of
promela and spin and also with current extensions such as Pspin(for parallel
verification), dspin(for promela with dynamic structures) and xspin/Project
(for management of verification results) which were presented in [8]. Documen-
tation and current and future versions of αspin can be found at [25].

The paper is organized as follows. Section 2 contains some preliminary back-
ground on the main topics of the paper. Section 3 gives some methodological
aspects about the use of the tool. Section 4 presents the theoretical basis to sup-
port correct abstraction by transformation of promela. Some of the concepts
were previously presented in [10]. In Section 5, we give details on the use of xml
to support automatic constructions of the models. Section 6 contains some im-
plementation details of αspin and an explanatory application. In Section 7, we
discuss the main contributions of the work and Section 8 presents conclusions.

2 Preliminaries

In this section, we give some details about promela, ltl, spin and xml.

2.1 PROMELA, LTL and SPIN

In the last few years, spin has become one of the most employed model check-
ers in both academic and industrial areas. It supports the verification of usual
safety properties (like deadlock absence) in systems written in the modelling
language promela as well as the analysis of complex requirements (regarding
the evolution of the system) expressed with Linear Temporal Logic (ltl). By
default, given a ltl formula, spin translates it into an automata that represents
an undesirable behavior (which is claimed to be impossible). Then, verification
consists in an exhaustive exploration of the state space searching for executions
that satisfy the automata. If such an execution exists, then the tool reports it as
a counterexample for the property. If the model is explored and a counterexam-
ple is not found, then the model satisfies the ltl property (all possible execution
branches satisfy the property). Properties that are satisfied in all executions are
called universal properties.

promela is a modelling language designed for describing systems composed
of concurrent asynchronous communicating processes (such as the software for
distributed systems). A promela model P = Proc1|| . . . ||Procn consists of a
finite set of concurrent processes, global and local channels, and global and
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local variables. Processes communicate via message passing through channels.
Communication may be asynchronous using channels as bounded buffers, and
synchronous using channels with size zero. Global channels and variables deter-
mine the environment in which processes run, while local channels and variables
establish the internal local state of processes.

promela is a non-deterministic language that borrows some concepts and
syntax elements from Dijkstra’s guarded command language, Hoare’s CSP lan-
guage and C programming language. A promela process is defined as a sequence
of possibly labelled sentences preceded by the declarative part. Basic sentences
in promela are those that produce a definite effect over the model state; in
other words, the assignments, the instructions for sending (receiving) messages
to (from) channels and the Boolean expressions, BExp, that include tests over
variables and contents of channels. In addition, promela has other non-basic
sentences like the non-deterministic If and Do sentences. Initialization of models
may be defined by the init process.

spin verifies ltl formulas against promela models. Well-formed ltl formu-
las are inductively constructed from a set of atomic propositions (in promela,
propositions are tests over data, channels or labels), the standard Boolean op-
erators, and the temporal operators: always “✷”, eventually “✸” and until “U”.
Formulas are interpreted with respect to traces ti = si → si+1 → . . .. Each trace
expresses a possible model execution from state si. The use of temporal operators
permits construction of formulas that depend on the current and future states
of a configuration sequence. The semantics of ltl is shown in Fig. 1.

ti |= p iff si |= p, p being a proposition
ti |= ✷p iff ∀j ≥ i.tj |= p, p being a temporal formula
ti |= ✸p iff ∃j ≥ i.tj |= p, p being a temporal formula
ti |= p U q iff ∃k ≥ i.∀j.i ≤ j < k.tj |= p, tk |= q, p and q being temporal formulas

Fig. 1. LTL semantics

2.2 XML and related tools

W3C introduced xml [27] as a way to format and manage formal documents. xml
offers several interesting properties: it is straightforwardly usable over Internet,
it supports a wide variety of applications, and there exist tools to easily write
programs which process xml documents.

xml is used to create a particular set of tags used for coding specific infor-
mation. The basic xml building block is known as entity. An entity contains
data which may be syntactically analyzed. Analyzed data use tags for describ-
ing the storage structure of a document and its logical organization. Element
tags represent the most used components. Elements start with an identifier tag
<element>, and end with a closing tag </element>. Elements may contain mixed
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data, consisting of character data and/or some other elements, thus composing
a hierarchical tagged structure.

In relation to the xml specification, a number of tools and related standards
have been created. Some of them are intended to extend the xml basic function-
ality, like XPath [26] (a language for addressing parts of an xml document) or
XSLT (eXtensible Stylesheet Language for Transformations) [29]. There are also
APIs like SAX or DOM [28] that can be used when reading and manipulating
xml documents. SAX is a document-driven programming library that supports
an event-handler register for the treatment of tags. DOM allows us to convert a
document into a tree-shaped structure in memory, where new elements can be
easily replaced and added. JDOM is a library, written in Java, which includes
the functionality of SAX and DOM and which is in the process of being adopted
as part of the Java core platform [19].

Fig. 2. αspin architecture

3 Methodology

In this section, we briefly present some methodological notes on the use of αspin.
The main components of our current project are shown in Fig. 2.

The usual method for proving the correctness of a model consists of succes-
sively proving certain temporal formulas that represent the safety and liveness
properties that the model must hold. In the first stages of the system analysis,
when the properties to be proved are universal (i.e. they must hold over all exe-
cution traces), errors usually are quickly detected, that is, it is not necessary to
analyze many states in order to find an execution trace over which the current
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property does not hold. In this case, the tool provides user with a counterexam-
ple which may be used to improve the model. However, a problem arises when
the tool can neither prove nor disprove a temporal property due to the state-
explosion problem. At this moment, user may make use of the abstraction tool
as next explained.

Our idea is to iteratively alternate between the verification and the abstrac-
tion phases as follows. We begin with the verification phase. If the system (spin)
cannot verify the satisfaction (or the non-satisfaction) of a property F over the
original model M because M is too large to be handled, then the abstraction
phase is started. At this point, the user must supply an abstraction function α
to guide the transformation of M into a more abstract model Mα. We assume
here that α represents both the abstraction of data and the modification of the
basic operations in the language. The abstraction function α may be provided
from a library or newly defined.

Property F may also need to be transformed into an abstract property Fα

when the model is transformed. Once Mα and Fα have been constructed, we
pass again to the verification phase. When transforming the property, we intro-
duce a weak satisfaction relation which includes the loss of precision due to the
abstraction process. Since the execution of Mα usually involves more behaviours
than really possible, the counterexample provided by the tool, when the abstract
property does not hold over the model, has to be carefully analyzed. The anal-
ysis of spurious counterexamples is one of our current work. When the abstract
property holds, the user can discard very undesirable behaviours, and he gains
confidence in the correctness of the model. In addition, it also possible to ana-
lyze a more precise version of the abstract property by a refinement process. The
refinement consists of replacing the definitions of propositions in the formula by
more accurate ones. We repeat the process with a different α until obtaining a
feasible counterexample or some information about the satisfaction of the orig-
inal property F against the original model M . Usually, the new α is a more
precise version of the previous one. In Section 4.2, we summarize the theoretical
results that support the methodology here presented.

4 Abstracting PROMELA

In this section, we give an overview of the proposal in [10, 12]. In these works,
we present a theoretical framework to automatically construct more abstract
models by syntactic transformation. For this purpose, we define a generalized
structured operational semantics for promela. The selection of this semantics
may be understood by noting that many language aspects (like the interaction
among processes and the execution of non basic sentences) are not modified
during the abstraction process. Thus, it seems natural to use a semantics in which
these aspects are separated from the ones which may be changed by abstraction
(the data interpretation and the execution of basic sentences).

Thus if State is the set of model states, and effect : Inst × State → State
and test : BExp × State → {false, true} are two functions describing the ef-
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fect of executing a basic sentence and a test in a given state, respectively, then
the semantic function Gen(−, effect , test) : promela → ℘(Trace) associates
each model M with the set of traces Gen(M, effect , testα), where Trace =
∪{i≥0}Statei

⋃
Statew, Statei = State × i· · · × State and Statew is the set of

infinite sequence of states. Each trace represents a model simulation which uses
functions effect and test when executing a basic sentence or a Boolean expres-
sion. Basic sentences are assignments, operations over channels and so.

The advantage of this representation is the ability to describe and relate
different model behaviors. For instance, the usual/standard behavior of a model
M is given by STD(M) = Gen(M, effectP , testP ), where effectP and testP are
the functions defining the standard behavior of promela basic sentences.

In accordance with these considerations, given Gen(M, effect , test) an in-
terpretation of a model M , the use of the abstract interpretation technique
to reduce the model size consists in defining a reduced set of states Stateα

by means of an abstraction function α : State → Stateα and two functions
effectα : Basic× Stateα → Stateα and testα : BExp× Stateα → {false, true},
giving the proper meaning to the basic promela sentences. Given the previous
discussion, Gen(M, effectα, testα) defines a non-standard (abstract) behavior of
M .

proctype Lift(int pid){
int Order=null;
do
:: SysLift_Lift[pid]?Order;

if
:: (Order==Up) ->

Position[pid]=Position[pid]+1;
:: (Order==Down) ->

Position[pid]=Position[pid]-1;
...........

}

Fig. 3. Lift system model

From the point of view of the applicability of abstraction techniques, the
generalized semantics allows us to isolate the key points (effect, test) which are
affected by abstraction, independently of the complexity of language construc-
tions. This facilitates the definition of abstractions, the analysis of correctness
and preservation results, and even the implementation (applying an abstrac-
tion can be computer supported by only defining two mappings, which can be
described by means of macros).

For instance, Fig. 3 shows an excerpt of a promela model that repre-
sents the behavior of a lift (extracted from [9]). In order to simplify the ex-
position, we assume that system states are given by the value of the variable
Position[pid] that is an integer number between the values 0..nb floor − 1.
Variable Position[pid] always stores the current floor for the lift identified by
pid. To reduce the model size, consider the poset (FLOORS,≤α) illustrated in
Fig. 4 and the abstraction function α : [0..nb floor − 1] → FLOORS defined as
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α(0) = lower , α(nb floor −1) = upper and ∀0 < j < nb floor −1, α(j) = middle.
The use of the partial order ≤α allows us to include the notion of approximation
in the abstract domain FLOORS: the abstract value noUpper approximates any
floor different from the upper one, thus noUpper is an abstract value less precise
than both lower and middle. Value unknown is the least precise abstract data
since it represents any floor.

middle upperlower

noUpper noLower

unknown

Fig. 4. The lattice for FLOORS

The redefinition of states involves the redefinition of the effect of basic sen-
tences. The table in Fig. 5 shows a possible definition of the abstract effect of the
instruction i = i + 1 in the abstract state sα, the abstract state Lower being
the state in which variable i has the value lower and so on. Fig. 5 also presents
a possible definition of the abstract test i == 0.

sα effectα(i = i + 1, sα) testα(i == 0, sα)

Lower Middle true
Middle NoLower false
Upper ⊥ false

NoLower NoLower false
NoUpper NoLower true
Unknown Unknown true

Fig. 5. Part of the abstract effect and test
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4.1 Correctness

Given α an abstraction function, it is clear that functions effectα and testα

can be arbitrarily defined. However the interest of the approach is in preserv-
ing some correction properties between STD(M) = Gen(M, effectP , testP ) and
STDα(M) = Gen(M, effectα, testα). In [10, 12] there is an exhaustive study of
the correctness conditions that testα and effectα must verify for STDα(M) to
be a correct approximation of STD(M). Partial definitions of functions effectα

and testα given in Fig. 5 verify these conditions.
Correctness conditions guarantee that the reduced/abstract model correctly

simulates the original one in the sense that for each non-deadlocked trace t =
s0 → s1 → . . . in STD(M) there exists a non-deadlocked abstract trace
tα = sα

0 → sα
1 → . . . in STDα(M) that approximates it, which is denoted

by α(t) ≤α tα. Trace simulation means that for all i, state sα
i approximates si,

i. e., α(si) ≤α sα
i . Note that we explicitly exclude deadlocked traces because

the abstraction process may modify this safety property of the system.

4.2 Practical results

The previous semantic framework allows us to relate the original and the abstract
models to obtain certain practical results concerning the satisfaction of universal
temporal formulas and the absence of deadlock.

In order to analyze deadlock absence preservation, we must impose some con-
ditions, called executability conditions, on the definition of testα. In promela,
Boolean conditions are guards in the sense that the system deadlocks when a
control point, in which all conditions are false, is reached. Executability con-
ditions assure that abstraction does not modify the evaluation of the Boolean
expressions which can provoke the system deadlock. Under executability condi-
tions, the following theorem holds.

Theorem 1. STDα(M) has no execution trace which deadlocks if, and only if,
STD(M) has no deadlock either.

Atomic propositions in ltl formulas regarding promela models are Boolean
expressions; thus in accordance with the previous discussion we can consider
different notions of formula satisfiability, depending on the underlying model
interpretation. Given I(M) = Gen(M, effect , test) an interpretation of the model
M , we say that a state s ∈ State verifies a proposition p under I, and write
s |=I p iff test(p, s) holds. This definition may be easily extended to universal
temporal formulas and traces, and so we can say that model M verifies the
universal temporal formula F under the interpretation I and write I(M) |=I F ,
iff for all t ∈ I(M).t |=I F . Given STD(M) the standard interpretation of a
model M and STDα(M) = Gen(M, effectα, testα) an abstract interpretation
that is correct with respect to STD(M), we say that t ∈ STD(M) verifies the
universal temporal formula F under STDα and write STD(M) |=α F , iff for all
t ∈ STD(M) there exists tα ∈ STDα(M) such that α(t) ≤α tα and tα |=α F . We
write |= and |=α for |=STD and |=STDα , respectively. With these definitions, the
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following theorem that relates satisfaction of universal temporal formulas over
different model interpretations holds.

Theorem 2. Assume that STD(M) is a deadlock-free interpretation of a model
M and that STDα(M) is an abstract interpretation correct wrt STD(M). If F
is a universal property and STDα(M) |=α F , then STD(M) |=α F .

The first result can be directly employed to discard deadlock in the original
model by analyzing the abstract (simpler) model. The second result says that if
the abstract model satisfies the abstract interpretation of the formula F , then
original models also satisfies the abstract interpretation of F . We call this result
“weak preservation” because the abstraction process may involve some loss of
information when analyzing temporal formulas. The next theorem studies when
temporal formulas are “strongly preserved”.

Theorem 3. Assume that STD(M) is a deadlock-free interpretation of a model
M and that STDα(M) is an abstract interpretation correct wrt STD(M). If
F is a universal property such that γ(α(F )) = F and STDα(M) |=α F , then
STD(M) |= F .

Informally, condition γ(α(F )) = F means that the abstraction process has
not modified the meaning of the formula to be analyzed. In [12, 13], we study
when abstractions satisfy such a condition and also how to obtain different pre-
cision degrees when analyzing abstract formulas by means of a process of refine-
ment.

inline INC(v){ proctype Lift(int pid) {
if int Order=null;
::(v==LOWER)-> v=MIDDLE; do
::(v==MIDDLE)-> v=NO_LOWER; :: SysLift_Lift[pid]?Order;
::(v==NO_UPPER)-> v=NO_LOWER; if
::(v==NO_LOWER)-> v=NO_LOWER; :: (Order==Up) ->
::(v==UPPER || v==ILLEGAL)-> v=ILLEGAL; INC(Position[pid]);

assert(0);
fi ...}

}

Fig. 6. Partial implementation of effectα

4.3 Implementation approach

We have addressed the implementation problem by means of source-to-source
transformation. The method is based on replacing each instruction in M by a
standard promela code that implements testα and effectα in order to obtain
a new model Mα. Then the verifier is produced for Mα and the verification is
carried out by only executing standard instructions. This approach corresponds
to implementing a verifier for Gen(Mα, effectP , testP ).
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For instance, Fig. 6 shows INC, a possible implementation of abstract incre-
ment i = i + 1 defined in Fig. 5. The code in the second column of Fig. 6
illustrates the transformation of the original code into the abstract one.

Similarly, temporal formulas are transformed using the abstract version testα

of function test .
Although the transformation method is clearly motivated in [10], in this

previous paper, the problem of implementation was not completely solved. The
rest of the paper presents one implementation of this method using xml.

5 XML descriptions

We consider xml as the unique internal representation to perform the abstrac-
tion by transformation as shown in Fig. 7. We think that the intermediate xml
structure may be used to apply our abstraction method to other modelling lan-
guages. The actual modelling language can be translated into this representation
by a front-end module (steps 1 and 2 in Fig. 7) and the final abstracted model for
the model checker can be produced by a specific back-end module (steps 6 and
7). Furthermore, if we use the same internal notation for both models and ab-
straction functions, we can concentrate efforts in developing reusable techniques
and uniform tools for transformation based abstraction.

Fig. 7. Architecture of xml based abstraction

In addition to the practical reasons like the use of browsers and other user-
friendly presentation tools, the development of xml oriented tools is supported
by a number of more technical reasons. As every model checker uses a particular
input, from the point of view of the modelling language, each one has a specific
parser and additional support to convert the model specification into a suitable
internal data structure for the model checking phase. Unfortunately, it is not a
common practice to have access to this internal representation, because model
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checking tools are source-closed or not flexible enough for implementing data
transformation or manipulation via a set of APIs, as required in abstraction.
Even in cases of open source projects like spin, most of the work to perform
abstraction cannot be directly reused for other model checkers. In addition,
the xml representation of the model facilitates traditional tasks in abstraction
tools, such as finding relationships among variables, locating the points where a
particular variable is employed, etc.

As regards abstraction functions, xml is a powerful means to represent the
mapping between concrete and abstract data and abstract operations, including
details such as the type of the operands, precedence rules, etc. The language also
offers the advantage of being a suitable notation to define the whole abstraction
library to contain all abstraction functions as a repository.

Fig. 7 shows the whole process of applying an abstraction function to a vari-
able (or a group of them) declared in a promela model. The first step is carried
out by transforming the original model into an xml document suitable for exter-
nal manipulation. Then, the abstraction tool produces another xml document
using the abstraction function in the library to conduct the transformation.
Finally, the abstract promela version is obtained with the back-end module.
Most of the work in this process consists in defining abstraction functions and
transforming the xml documents, and it can be reused to construct specific
abstraction tools for other model checkers and modelling languages.

5.1 DTD for Promela

The structure of a valid xml document is supplied by a dtd (Document Type
Definition) file. A dtd specifies the kind of tags that can be included in an xml
document, and the valid arrangements of these tags. Although it is not necessary,
a dtd file may help to verify that an xml document is well formed, i.e., that
it respects the full promela grammar, which represents a prerequisite for the
subsequent abstraction process. Thus, a major task is defining a tagged language
based on xml that can represent the promela models. For this purpose, a
vocabulary of tags and a dtd have been modelled.

<!ELEMENT model (declaration | typedef | process | init | never)+>
<!ELEMENT process (parameters?, priority?, precondition?, body)>
<!ATTLIST process instances CDATA #IMPLIED

name CDATA #REQUIRED>
<!ELEMENT priority (#PCDATA)>
<!ELEMENT parameters (declaration+)>
<!ELEMENT declaration (var+ | enumtype)>
<!ATTLIST declaration visibility (HIDDEN | SHOW | ISLOCAL) #IMPLIED

type (BIT | BOOL | BYTE | SHORT | INT | CHANNEL | UNSIGNED) #REQUIRED>
<!ELEMENT var (messages)?>
<!ATTLIST var name CDATA #REQUIRED

value CDATA #IMPLIED
array_elements CDATA #IMPLIED>

Fig. 8. Part of promela dtd
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Fig. 8 shows part of the file promela.dtd used as a template for building valid
xml models. A dtd is built following EBNF notation: each element (!ELEMENT) has
a correspondence with an xml tag. Attributes (!ATTLIST) refine information for
a tag. In the figure, the first tag encountered is <model>, that may contain
other nested tags, representing processes, declarations of global variables, new
type definitions, startup scripts, etc. Fig. 8 also shows elements as <declaration>,
<process> and <var>. A declaration may contain information about visibility
of the variables included within. For the validation phase, a HIDDEN variable is not
referenced in the state vector. For a simulation, SHOW visibility means that the
variable can be checked for statistics. This attribute is optional (#IMPLIED). The
type of the variables is a mandatory attribute for a declaration (#REQUIRED). A name
must be provided for <var>. Optionally, a variable may include an initialization
value and a number of cells if it is going to be used as array. More detailed
information about dtd may be found at [25].

<abstractionRepository>
<template name="FLOORS" concreteDomain="INT">

<map>
<abstractValue name="LOWER" infoLevel="1"> ... </abstractValue>
<abstractValue name="MIDDLE" infoLevel="1"> ... </abstractValue>
<abstractValue name="UPPER" infoLevel="1"> ... </abstractValue>
<abstractValue name="NOUPPER" infoLevel="2" moreImpreciseThan="LOWER.MIDDLE" />
<abstractValue name="NOLOWER" infoLevel="2" moreImpreciseThan="MIDDLE.UPPER" />
<abstractValue name="UNKNOWN" infoLevel="3" moreImpreciseThan="NOUPPER.NOLOWER" />
<abstractValue name="ILLEGAL" />

</map>
<operation id="INC">

<option><test left="LOWER" />
<effect return="MIDDLE" />

</option>
<option><test left="MIDDLE" />

<effect return="NOLOWER" />
</option>
<option><test left="NOUPPER" />

<effect return="UNKNOWN" />
</option>
<option><test left="NOLOWER" />

<effect return="NOLOWER" />
</option>
<option><test left="UPPER" />

<effect return="ILLEGAL" />
</option>
<default return="ILLEGAL" />

</operation>
</template>

</abstractionRepository>

Fig. 9. An Abstraction Repository with part of the FLOORS abstraction

5.2 Abstraction Library

As was commented earlier, abstraction functions are stored as templates in xml
format, which avoids modelling-language dependencies. For this purpose, we have
defined a new metalanguage for the repository. In this section, we present some
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of its features using the example in Fig. 9 which shows part of the structure for
the FLOORS abstraction. The root element is named <abstractionRepository>,
and it must include at least one <template> element. A template specifies a
name and the concrete domain of the variables to be abstracted. Every template
must also define the abstraction of every concrete value, that is, the abstraction
function α. This information is stored within a unique <map> element. A map
transforms each concrete data <item> into its corresponding abstract data. This
transformation is represented by a sequence of tags (one tag for each abstract
data) <abstractV alue>. Each tag selects the concrete values approximated by the
corresponding abstract value, making use of a Boolean expression. Such Boolean
expressions are also written in xml as <expression> elements. This is not shown
in the figure for simplicity.

Fig. 10. Graphical User Interface
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Each abstract value has an identifier and, optionally, a number indicating
its precision degree (greater numbers correspond to less precise values). With
this additional data, users can easily extract the partial order defined over the
abstract domain.

Abstract operations have a name which must match the name used by the
xml metalanguage when translating the original promela models. The defini-
tion of each operation includes a collection of transforming options <options>,
every of which has one <test> tag to represent the argument of the operation
and a <effect> tag to represent its result. When more complex expressions ap-
pear, they are incorporated as <expression> tags in order to be evaluated by
the back-end module as follows. When a test is satisfied, its effect may be a
constant value, as an attribute when no tag is nested or, otherwise, the result of
the evaluation of a complex expression.

6 Evaluating αSPIN

Fig. 10 shows part of the Graphical User Interface for the current version of
αspin. The GUI gives information about the variables contained within the
model (name, type and context: global or local), the available templates in the
abstraction library and the assignment of templates to variables. The user can
establish/delete relations of variables with templates (step 4 in Fig. 7). Then the
promela output is obtained (steps 5 to 7 in Fig. 7).

nb_floor -1

.

.

3

2

0

Lift ()

SysLift ()

SysStop ()

Sampler ()

...............

Position[ ]

Internal_request[ ]

...............

Global variables

Fig. 11. Lift schema

Regarding the implementation of the architecture in Fig. 7, we have im-
plemented two parsers Promela2XML and XML2Promela, which are fully in-
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tegrated within xspin and whose use is hidden from the user. The abstraction
module is written in Java, using the JDOM library.

One of the models employed to test our approach is a variant of the promela
code for an elevator controller presented in [9] (see Fig. 11). The original speci-
fication considers a controller system to manage n lifts, and our aim is to verify
that the same control structure also works for only one lift. The control part
receives the inputs from the environment and sends the orders to the Lift() pro-
cess. This part is divided into several processes that communicate via rendezvous
channels and global variables. The main variables to control the flow in every
process are the global variable Position, which always stores the current floor
for the lift, and the global array internal request[nb floor], which stores the
pending requests to move to specific floors, nb floor being the actual number
of floors in the system. The code in Fig. 3 shows the updating of this variable
in the Lift() process, depending on the order from the control part (Up, Down,
OpenDoors,. . . ). The whole model can be found at [25].

We have chosen one of the most critical and time consuming temporal prop-
erties to show the power of automatic abstraction. The property Move says that
“the lift always starts the movement to the requested floor”

As in any verification work, we start checking that the system is deadlock free
using several configurations of floors. Fig. 12 shows how the number of transitions
and visited states increases as the number of floor increases (transitions and
states in the concrete model). The full-state search can only be performed for a
small number of floors. For example, the configuration with 100 floors produces
3.485841e+7 states, using bit-state partial verification.

The verification of the temporal property Move is performed after being sure
that the model is deadlock free. This property can be formalized as follows:

Move: [] ((reqL && posU ) -> <> posBelowU) && ((reqU && posL) ->
<>posAboveL) && ((reqM && noPosM)-> <> posM))

where the propositions reqL,reqU and reqM represent requests from lower, upper
and middle floors, respectively. Propositions posU, posBelowU, posL, posAvobeL,
and noPosM represent whether the lift is currently at, above or below, an specific
floor. These propositions are defined according to the interpretation standard or
non-standard as defined in Section 4.2.

The main problem in verifying the concrete model is that the verification
time is highly dependent on the number of floors, and it is not scalable when this
parameter is increased to high values. Fortunately, propositions in the formula
Move give us a guide on how to abstract. As the evaluation of these proposi-
tions mainly relies on the value of the variable Position, and this variable is
used as a counter, we could employ the FLOORS abstraction to reduce the state
space to be visited. However, the use of FLOORS implies that the global array
internal request[nb floor] has to be abstracted by an array with only three
components (this information is suggested by the abstraction tool by analyzing
the xml representation of the model).

The results verifying the abstract model are shown in Fig. 12. Note that it is
necessary to ensure that the system is deadlock-free before checking the temporal
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Fig. 12. Verification results

property Move. In this way, we can apply all the practical results related to the
verification of universal temporal properties. Property Move is satisfied by all
the analyzed configurations, but as expected, the number of visited states is
very small compared to the concrete model. Furthermore, the variation of the
number of states is linear with respect to the number of floors. Using the results
in Theorem 2, the verification of Move in the abstract model gives us information
about the behavior of the original model.

7 Discussion

The use of xml provides new interesting capabilities compared to other tools
that perform abstraction for model transformation. In particular, the encoding
of abstraction functions with xml allows us to extend the classical definition of
abstract operations with new information. For example, the infolevel attribute
defines the precision in the underlying lattice. The tags test and effect can
support executability conditions (a key element in promela).

In general, the use of xml for representing both the model and the abstrac-
tion functions provides interesting advantages regarding static analysis of mod-
els. We can easily find information about variable dependence, type inference,
etc., which are very useful in helping users to select the abstraction functions.
And in particular, we can improve the evaluation of heterogeneous expressions.
For example, if the variable x has been abstracted with the classical SIGN ab-
straction that approximates each integer number by one of the elements of the
set {neg, zero, pos}, and the variable y in the instruction x = x + y + 1 has
not been abstracted, then it is possible to produce results with different degrees
of precision. With our way of storing the expression and the abstraction, it is
easy to discover that the concrete sum y + 1 must be the first expression to be
executed in order to obtain the most precise result.

As regards non-determinism due to the loss of information when executing ab-
stract operations, we use specific abstract constants instead of sets of constants
as employed in [5]: for example, we use the value noupper instead of the set
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{lower,middle}. From the implementation point of view, the use of sets implies
utilizing non-deterministic assignments when updating variables abstracted. In
contrast, the use of specific constants removes the use of non-deterministic as-
signments. The first case provokes the direct creation of several branches, while
our method allows us to delay this creation until a test over the updated vari-
able is found. Furthermore, the use of constants does not make counterexample
analysis more difficult, particularly when abstract counterexamples correspond
to deterministic traces [24, 23].

8 Conclusions and Further work

We have presented the actual state of αspin, a tool for abstracting models in
the context of explicit model checking. Documentation and current and future
versions of αspin can be found at [25]. The most novel contribution of this work
is to exploit the characteristics of xml as the intermediate language to support
the abstraction process. This unusual application of xml defines a language-
independent framework to develop tools for abstract model checking.

Our future work is oriented in two directions. The first is to add functionality
to αspin, including features such as a friendly GUI to create new abstraction
functions, and strategies to automatically analyze their correctness using PVS.
The other line of work is to improve counterexample analysis. Current works on
this subject have been developed mainly for symbolic model checking. We are
now interested in finding new strategies for explicit model checking, which are
usually based on the analysis of deterministic traces.
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